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Polybrominated diphenyl ethers (PBDEs) are 
synthetic chemicals used as flame retardants in 
a variety of consumer products such as elec-
tronics, furniture, textiles, and construction 
materials. The chemical structure and prop-
erties of PBDEs are similar to those of poly-
chlorinated biphenyls (PCBs), which were 
banned in the United States in 1978 (Toxic 
Substances Control Act of 1976). Theoretically, 
a total of 209 PBDE congeners may be pro-
duced depending on the number and position 
of bromine atoms on the diphenyl ether struc-
ture, although only congeners with more than 
four bromines are used commercially. PBDEs 
are lipophilic, bioaccumulate in wildlife and 
humans, and biomagnify up the food chain 
(Burreau et al. 1999). Congeners with lower 
bromine contents are particularly persistent, 
with estimated half-lives ranging between 2 and 
12 years in humans (Geyer et al. 2004). PBDEs 
are global contaminants that have been detected 
in human adipose tissue, serum, and/or breast 
milk samples collected in Asia, Europe, North 
America, Oceania, and the Arctic (Bi et al. 
2006; Harrad and Porter 2007; Pereg et al. 
2003; Sjodin et al. 1999, 2008). The concen-
tration of these chemicals in human serum and 
breast milk has exponentially increased in the 
last three decades (Noren and Meironyte 2000; 
Schecter et al. 2005; Sjodin et al. 2004a).

Prenatal exposure to PBDEs has been 
reported to alter spontaneous motor behav-
ior, memory, and learning in rats and mice 
(Kuriyama et al. 2005; Viberg et al. 2003). 
In humans, higher maternal serum PBDE 
levels were found to be related with lower 
scores on measures of intelligence and atten-
tion (Herbstman et al. 2010; Roze et al. 2009) 
and increased time to pregnancy (Harley et al. 
2010). Maternal thyroid hormones (THs) 
play an essential role in fetal brain develop-
ment (Auso et al. 2004; Haddow et al. 1999) 
and modulate menstrual cycle characteristics 
(Poppe and Velkeniers 2004). It has thus been 
suggested that PBDEs may affect neurode-
velopment and fertility by disrupting THs 
(Agency for Toxic Substances and Disease 
Registry 2004; Harley et al. 2010).

Similarly to studies on PCBs (Craft et al. 
2002; Desaulniers et al. 1999), most stud-
ies conducted in nonpregnant rats and mice 
report that exposure to PBDEs lowers free 
and/or total thyroxine (T4) in a dose-depen-
dent fashion and thus has a hypothyroxine-
mic effect; PBDE exposure generally did not 
affect thyroid-stimulating hormone (TSH) 
levels [see Supplemental Material, Table 1a 
(doi:10.1289/ehp.0901905)] (Hallgren and 
Darnerud 2002; Hallgren et al. 2001; Zhou 
et al. 2001). Only two experimental studies 

have been conducted in pregnant animals. 
Zhou et al. (2002) exposed rat dams daily 
to the PBDE commercial mixture DE-71 at 
doses of 0, 1, 10, and 30 mg/kg from gestation 
day (GD) 6 to postnatal day (PND) 21 and 
found a 48% and 44% decrease in total T4 in 
the high-exposure group relative to controls at 
GD20 and PND22, respectively (free T4 not 
measured). Skarman et al. (2005), however, 
did not find daily exposure to PBDE congener 
BDE-99 or the commercial mixture Bromkal 
70-5DE beginning on GD4 to affect total or 
free T4 levels in mice at GD17.

In contrast to animal experimental stud-
ies, human epidemiologic studies conducted 
in nonpregnant adults generally reported 
lower TSH and higher free and total T4 in 
relation with higher PBDE concentrations 
in serum (Bloom et al. 2008; Dallaire et al. 
2009; Hagmar et al. 2001; Julander et al. 
2005; Turyk et al. 2008) and house dust 
(Meeker et al. 2009), suggesting that these 
chemicals may exert a hyperthyroidic effect 
[see Supplemental Material, Table 1b 
(doi:10.1289/ehp.1001905)]. Turyk et al. 
(2008), for instance, found positive associa-
tions between the sum of eight PBDE con-
geners and both free and total T4, and an 
inverse association with TSH in 308 male 
Great Lakes fish consumers. Participants in 
the fourth quartile of exposure to BDEs 99 
and 153, but not BDEs 47 and 100, had 
modestly increased free and total T4 levels 
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Background: Human exposure to polybrominated diphenyl ether (PBDE) flame retardants has 
increased exponentially over the last three decades. Animal and human studies suggest that PBDEs 
may disrupt thyroid function. Although thyroid hormone (TH) of maternal origin plays an essen-
tial role in normal fetal brain development, there is a paucity of human data regarding associations 
between exposure to PBDEs and maternal TH levels during pregnancy.

oBjectives: Our goal was to determine whether PBDE serum concentrations are associated with 
TH levels in pregnant women.

Methods: We measured the concentration of 10 PBDE congeners, free thyroxine (T4), total T4, and 
thyroid-stimulating hormone (TSH) in 270 pregnant women around the 27th week of gestation.

results: Serum concentrations of individual PBDE congeners with detection frequencies > 50% 
(BDEs 28, 47, 99, 100, and 153) and their sum (ΣPBDEs) were inversely associated with TSH 
levels. Decreases in TSH ranged between 10.9% [95% confidence interval (CI), –20.6 to 0.0] and 
18.7% (95% CI, –29.2 to –4.5) for every 10-fold increase in the concentration of individual conge-
ners. Odds of subclinical hyperthyroidism (low TSH but normal T4) were also significantly elevated 
in participants in the highest quartile of ΣPBDEs and BDEs 100 and 153 relative to those in the 
first quartile. Associations between PBDEs and free and total T4 were not statistically significant. 
Results were not substantially altered after the removal of outliers and were independent of the 
method used to adjust for blood lipid levels and to express ΣPBDEs.

conclusions: Results suggest that exposure to PBDEs is associated with lower TSH during preg-
nancy. Findings may have implications for maternal health and fetal development.
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relative to those in the first quartile of expo-
sure. In addition, odds of hyperthyroidism 
were 5.7 times higher [95% confidence inter-
val (CI), 0.9–36.4] in men with total PBDEs 
(ΣPBDEs) above versus below the 90th per-
centile (0.78 ng/g serum). In the largest study 
to date (n = 623), Dallaire et al. (2009) found 
a positive relation between plasma BDE-153, 
but not BDE-47, and total triiodothyronine 
(T3) in Inuits; they also reported nonstatisti-
cally significant inverse relationships between 
BDEs 47 and 153 and TSH. Contrary to the 
above studies, Yuan et al. (2008) found higher 
serum TSH in 23 highly exposed (median 
ΣPBDEs, 382 ng/g lipids) Chinese electronic-
waste workers relative to 26 controls who also 
had elevated serum ΣPBDE concentrations 
(median, 158 ng/g lipids).

Only one small study (n = 9) examined 
associations between serum PBDE and TH 
concentrations in women during pregnancy; 
no associations were found between ΣPBDEs 
and free or total T4 in serum samples col-
lected shortly before delivery (Mazdai et al. 
2003). Herbstman et al. (2008) measured 
PBDEs and TH in cord serum and reported 
that higher concentrations of BDE-100, but 
not BDEs 47 and 153, were associated with 
lower (< 20th percentile) total T4 [odds ratio 
(OR) = 2.1; 95% CI, 1.1–4.2] among women 
who had spontaneous unassisted vaginal deliv-
eries only (n = 92). BDEs 100 and 47, but 
not BDE-153, were associated with a reduced 
likelihood of high (> 80th percentile) TSH 
levels (OR = 0.4; 95% CI, 0.2–0.8 for both 
chemicals) among the same women.

We have previously reported a positive 
association between PCBs grouped according 
to their potential to induce uridine diphos-
phate glucuronosyltransferase (UDP-GT) in 
rodents and neonatal TSH (Chevrier et al. 
2007) and between total PCBs and free T4 in 
pregnant women (Chevrier et al. 2008). The 
purpose of the present investigation was to 
determine the relation between serum PBDE 
concentrations and thyroid function in the 
same population of pregnant low-income 
Latina women living in California.

Materials and Methods
Participants. Data from the Center for the 
Health Assessment of Mothers and Children 
of Salinas (CHAMACOS), a birth cohort 
study of health and environmental exposures, 
were used for this study. Pregnant women who 
sought prenatal care at one of six participat-
ing health clinics between October 1999 and 
October 2000 and were < 20 weeks gesta-
tion, ≥ 18 years of age, eligible for state-spon-
sored health care (Medi-Cal), and intended 
to deliver at Natividad Medical Center 
(Monterey County, CA, USA) were enrolled 
in CHAMACOS (n = 601). Women were 
excluded from the present analyses if they did 

not participate through delivery or did not give 
birth to a live child (n = 64), bore twins (n = 5), 
refused to give a blood sample or gave a sample 
of insufficient volume for PBDE (n = 168) or 
TH (n = 69) analyses, or took medication that 
could affect TH levels (n = 1). In addition, data 
were not reported for 24 serum samples that 
failed to meet quality assurance standards for 
PBDE measurement. A total of 270 women 
were thus included in this analysis. Study par-
ticipants provided written informed consent, 
and all research activities were approved by the 
University of California–Berkeley Committee 
for the Protection of Human Subjects.

Data collection. Participants were inter-
viewed at enrollment (mean ± SD, 14.0 ± 5.0 
weeks gestation) and at the end of the sec-
ond trimester of pregnancy (26.5 ± 2.4 weeks 
gestation) using structured questionnaires. 
Information about demographics, country of 
birth, time lived in the United States, parity, 
and health-related behaviors was collected. 
Medical records were abstracted by a registered 
nurse to obtain data on thyroid-related diseases, 
medication use, and general health status.

Blood samples were collected around the 
time of the second interview (mean ± SD, 
27.3 ± 3.1 weeks’ gestation) and were imme-
diately processed and stored at –80°C. PBDEs 
were measured in serum at the Centers for 
Disease Control and Prevention (Atlanta, 
GA, USA) using gas chromatography/isotope-
dilution high-resolution mass spectrometry 
(GC-IDHRMS) (Sjodin et al. 2004b). PBDE 
concentrations are expressed on a blood lipid 
basis. Total lipids were determined based on 
the measurement of triglyceride and total cho-
lesterol in serum using standard enzymatic 
methods (Roche Chemicals, Indianapolis, IN, 
USA) (Phillips et al. 1989). Limits of detec-
tion (LODs) ranged between 0.2 and 1.6 ng/g 
lipids except for BDE-47 (range, 0.8–5.6 ng/g 
lipids). Quality control samples were included 
in each run. THs were measured in serum by 
Quest Diagnostics’ Nichols Institute (San Juan 
Capistrano, CA, USA). Free T4 was meas-
ured by direct equilibrium dialysis followed 
by radioimmunoassay (Nelson and Tomei 
1988). Although results obtained by com-
monly used immunoassays may be affected by 
the blood concentration of T4-bound proteins 
(Wang et al. 2000), which increases during 
pregnancy (Glinoer 1997), equilibrium dialysis 
physically separates the free from the bound 
hormone before measuring it with a highly 
sensitive immunoassay. This method yields 
accurate measurements in samples with normal 
and elevated T4-bound protein concentrations 
(Nelson et al. 1994). Total T4 was measured by 
solid-phase immunochemiluminometric assay, 
and TSH by ultrasensitive third- generation 
immunochemiluminometric assay. LODs were 
0.1 ng/dL, 0.1 μg/dL, and 0.01 mIU/L for free 
T4, total T4, and TSH, respectively.

To control for other environmental expo-
sures that may affect TH, we measured PCBs 
and organochlorine pesticides [including 
hexachlorobenzene (HCB), p,p´-dichloro-
diphenyl trichloroethane (DDT), o,p´-DDT, 
p,p´-dichloro diphenyl dichloroethylene 
(DDE), γ-hexachlorocyclohexane, dieldrin, 
mirex, and trans-nonachlor] in serum samples 
using GC-IDHRMS, and lead in a subset of 
maternal (n = 70) and umbilical cord (n = 
161) blood samples using graphite furnace 
atomic absorption spectrophotometry. PCBs 
and organochlorine pesticides were expressed 
on a serum lipid basis.

Statistical analysis. We log10-transformed 
the serum concentrations of PBDE con-
geners to reduce the effect of outliers. We 
used Pearson’s correlations to evaluate the 
interrelationship of PBDE congeners and 
analysis of variance (ANOVA) to examine 
associations between demographic characteris-
tics and PBDE serum concentrations. We used 
multiple linear regression models to investigate 
the relationship between maternal PBDE and 
TH serum concentrations. Free and total T4 
were normally distributed, whereas TSH was 
right-skewed and was thus log10-transformed 
to approximate a normal distribution. We 
ran separate models for each congener with 
a detection frequency > 50% (BDEs 28, 47, 
99, 100, and 153) and for their sum. We ran 
models expressing exposure continuously and 
also categorically for each quartile of PBDE 
to investigate the possibility of a threshold for 
effect or other nonmonotonic exposure–re-
sponse relationship. In addition, we fit general-
ized additive models with 3-degrees-of-freedom 
cubic splines to evaluate the shape of exposure–
response curves and to test for digression from 
linearity while controlling for covariates. Using 
multiple logistic regression, we investigated 
associations between PBDE serum concentra-
tions and maternal hyperthyroidism based on 
laboratory reference ranges for women in their 
second (TSH < 0.5 mIU/L) or third (TSH 
< 0.8 mIU/L) trimester of pregnancy.

Potential confounders considered for 
inclusion in models (categorized as shown in 
Table 1 or expressed as indicated in parenthe-
ses) comprised maternal age (continuously), 
race/ethnicity, education, family income, 
country of birth, number of years spent in the 
United States, parity, body mass index, gesta-
tional age at the time of blood collection (in 
weeks, continuously), and smoking, alcohol, 
and drug consumption during pregnancy. We 
also considered environmental exposures such 
as blood lead, serum PCB [the sum of conge-
ners with detection frequencies > 75% and of 
potential UDP-GT inducers (Chevrier et al. 
2007)], and organochlorine pesticide concen-
trations, and we examined the possibility of an 
interaction between PBDEs (continuously) and 
PCBs (continuously, and dichotomized at the 
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75th and 90th percentiles), which was previ-
ously reported in rats (Hallgren and Darnerud 
2002). All environmental exposures were log10-
transformed. We had complete data on most 
covariates. Values of missing covariates were 
imputed at random based on observed prob-
ability distributions (< 2% missing) or on 
prediction models using nonmissing variables 
(≥ 2% missing). Covariates associated with any 
of the outcomes (p < 0.20) were included in 
all models. Final models comprised maternal 
age at enrollment, education, country of birth, 
gestational age at the time of blood collection, 
and family income as well as maternal HCB 
and total PCB serum concentrations.

Signals below instruments’ LODs may 
yield better estimates of true concentrations 

than imputed values. When possible, we thus 
used values < LOD as measured by instru-
ments. Undetected values were imputed based 
on a log-normal probability distribution whose 
parameters were estimated by maximum like-
lihood estimation. This procedure has been 
reported to perform better than simple sub-
stitution methods using LOD/2 or LOD/√

–
2 

(Baccarelli et al. 2005; Helsel 1990, 2005; 
Lubin et al. 2004). Undetected TSH levels 
were assigned a value equal to half the LOD of 
0.01 mIU/L.

We conducted sensitivity analysis to evalu-
ate the robustness of our results. We re-ran 
models excluding outliers with externally stu-
dentized residuals > 3. We also applied sepa-
rate models expressing PBDEs on a total lipid 
basis, and on a serum basis while including 
triglycerides and total cholesterol as covariates 
in models, and by expressing ΣPBDEs on a 
weight and molar basis. In addition, we ran 
models with untransformed PBDE values and 
outliers excluded.

Because findings were similar for all the 
models described above, we present only 
results from regressions with potential out-
liers included, log10-transformed exposures 
expressed on a serum lipid basis (nanograms 
per gram lipids), and ΣPBDEs as well as indi-
vidual congeners expressed on a weight basis. 
Statistical significance was set at p < 0.05 for 
main effects and p < 0.10 for interactions based 
on two-sided tests. Statistical analyses were 
performed using STATA/IC (version 10.1; 
StataCorp LP, College Station, TX, USA) and 
R (version 2.7.1; R Foundation for Statistical 
Computing, Vienna, Austria).

Results
Population characteristics. Participants were 
mostly young (mean ± SD, 25.5 ± 5.0 years), 
low income (62% ≤ federal poverty threshold), 
Latina (95%) women who had emigrated from 
Mexico within 10 years at the time of enroll-
ment (75%; Table 1). Most women were mul-
tiparous (67%) and did not have a high school 

diploma (77%). Although a small percentage 
of women reported that they smoked (7%) 
or used illegal drugs (2%), almost a quarter 
(24%) consumed some alcohol during preg-
nancy, and most (61%) were overweight or 
obese before pregnancy.

PBDE concentrations. Table 2 shows the 
serum concentrations and detection frequencies 
of individual PBDE congeners and of the sum 
of congeners with detection frequencies > 50% 
(ΣPBDEs). PBDE levels were lower than those 
reported in a nationally representative sample 
of nonpregnant adults (Sjodin et al. 2008). 
However, levels in CHAMACOS women were 
likely higher before pregnancy because changes 
in fat mass alter the serum concentration of 
persistent organic pollutants (Chevrier et al. 
2000). As reported in previous studies, BDEs 
47, 99, 100, and 153 had the highest detection 
frequencies (> 98% detection) and accounted 
for virtually all ΣPBDEs. BDE-47 contributed 
more than half of ΣPBDEs, followed by BDEs 
99, 153, and 100. We detected BDEs 17, 66, 
85, 154, and 183 in < 50% of samples and did 
not consider them in further analyses. PBDE 
congeners were moderately to strongly inter-
correlated (r = 0.6–0.9, p < 0.001); BDEs 47, 
99, and 100, which are the main components 
of penta-BDE commercial mixtures, were 
strongly intercorrelated [r > 0.9, p < 0.001; see 
Supplemental Material, Table 2 (doi:10.1289/
ehp.1001905)].

TH concentrations. Mean (± SD) serum 
concentrations of free and total T4 were 
0.83 ± 0.24 ng/dL and 10.7 ± 1.6 μg/dL, 
respectively; the geometric mean for TSH was 
1.2 (geometric SD = 1.7) mIU/L. Six partici-
pants had low free T4 (< 0.5 ng/dL), 10 had 
low total T4 (< 8.0 μg/dL), and one had high 
TSH concentrations (> 4.6 and > 5.2 mIU/L 
in second and third trimesters, respectively) 
based on laboratory reference ranges; TSH 
was elevated in 14 women based on National 
Academy of Clinical Biochemistry guide-
lines (> 2.5 mIU/L) (Mandel et al. 2005). 
TSH was suppressed (< 0.01 mIU/L) in two 

Table 1. ΣPBDE serum concentrations (ng/g lipids) 
around the 27th week of gestation by demographic 
characteristics in a population of pregnant women 
participating in the CHAMACOS study (n = 270).

Characteristic No. (%)a
Geometric mean 

(GSD)
Age (years)

18–24 129 (48) 27.3 (2.9)
25–29 90 (33) 23.8 (2.5)
30–34 34 (13) 27.2 (2.7)
35–45 17 (6) 35.6 (2.7)

Race/ethnicity
Caucasian 7 (3) 84.1 (4.3)**
Latino 257 (95) 25.3 (2.6)
Other 6 (2) 54.3 (2.8)

Education
≤ 6th grade 110 (41) 20.8 (2.3)#
7–12th grade 97 (36) 26.8 (2.8)
≥ High school diploma 63 (23) 39.5 (2.9)

Family income
≤ Poverty line 156 (62) 25.1 (2.5)
Poverty line to 200% 85 (34) 31.7 (3.1)
> 200% 10 (4) 17.7 (2.1)

Country of birth
United States 37 (14) 57.9 (3.0)#
Mexico 226 (84) 23.3 (2.5)
Other 7 (3) 30.0 (3.5)

Time in the United States (years)
≤ 5 146 (54) 21.5 (2.7)#
6–10 57 (21) 27.1 (2.2)
≥ 11 67 (25) 41.4 (2.7)

Parity
0 89 (33) 23.7 (2.9)
≥ 1 181 (67) 28.1 (2.6)

Smoking during pregnancy
Yes 19 (7) 35.2 (3.0)
No 251 (93) 26.0 (2.7)

Alcohol drinking during pregnancy
Yes 62 (24) 30.3 (2.9)
No 199 (76) 26.1 (2.7)

Drug use during pregnancy
Yes 4 (2) 86.3 (2.3)*
No 256 (98) 26.4 (2.7)

Prepregnancy body mass index
< 25 101 (39) 23.2 (2.5)
25–30 102 (40) 30.0 (3.0)
> 30 54 (21) 29.1 (2.6)

GSD, geometric standard deviation.
aFrequencies may not add to the total number of partici-
pants because of missing values. Percentages may not 
add to 100% because of rounding. *p < 0.05. **p < 0.01. 
#p < 0.001 (two-sided p-values using ANOVA).

Table 2. PBDE congeners serum concentration (ng/g lipids) around the 27th week of pregnancy in a 
population of pregnant women participating in the CHAMACOS study.

PBDEs n
LOD 

range
Percent 

detection GM 95% CI Min
25th 

percentile Median
75th 

percentile Max
ΣPBDEsa 270 0.2–2.6 100.0b 26.5 25.0–31.5 3.6 13.1 25.2 42.3 1338.6
BDE-17 268 0.2–0.7 1.9 — — < LOD < LOD < LOD < LOD 2.8
BDE-28 268 0.2–0.7 52.2 0.6 0.5–0.7 < LOD < LOD 0.5 1.5 29.7
BDE-47 270 0.8–2.6 99.6 15.3 13.5–17.3 < LOD 7.7 15.0 25.8 761.0
BDE-66 268 0.2–0.7 14.9 — — < LOD < LOD < LOD < LOD 10.1
BDE-85 270 0.2–0.7 47.8 — — < LOD < LOD < LOD 0.6 27.4
BDE-99 270 0.2–0.7 99.6 4.5 3.9–5.1 < LOD 2.3 4.0 6.7 298.0
BDE-100 270 0.2–0.7 98.5 2.8 2.5–3.1 < LOD 1.5 2.4 4.2 138.0
BDE-153 270 0.2–0.7 98.5 2.4 2.1–2.7 < LOD 1.3 2.1 3.8 96.9
BDE-154 270 0.2–0.7 41.9 — — < LOD < LOD < LOD 0.6 20.6
BDE-183 270 0.2–0.7 30.6 — — < LOD < LOD < LOD 0.4 5.9

Abbreviations: GM, geometric mean; Max, maximum; Min, minimum. We did not calculate geometric means and their 
respective 95% CIs for congeners with detection frequencies < 50% (—). 
aSum of congeners with detection frequencies > 50% (BDEs 28, 47, 99, 100, and 153). bPercentage of samples with at 
least one congener above the LOD. 
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women and was low (< 0.5 and < 0.8 mIU/L 
in second and third trimesters, respectively) 
in 35 women; four women had high free T4 
(> 1.6 ng/dL), whereas none had elevated 
total T4 (> 17.8 and > 20.1 μg/dL in sec-
ond and third trimesters, respectively). Free 
and total T4 decreased with age in a linear 
fashion (r = –0.21 and –0.25, respectively; 
p < 0.001); TSH was not associated with age. 
Other demographic characteristics were not 
significantly associated with TH levels (data 
not shown).

Associations between PBDE and TH serum 
concentrations. Table 3 shows that none of the 
PBDE congeners were significantly associated 
with free or total T4 concentrations. Despite 
small coefficients of determination (R2), all 
PBDE congeners were significantly inversely 
associated with TSH. Associations ranged 
between a 10.9% (95% CI, –20.6 to 0.0%) 
and a 18.7% (95% CI, –29.2 to –4.5%) 
decrease in TSH for every 10-fold increase in 
the serum concentration of individual con-
geners (computed from Table 3). A 10-fold 
increase in ΣPBDE was associated with a 
16.8% (95% CI, –27.6 to –2.3%) decrease 
in TSH, corresponding to a 37.7% decrement 
over the full range of ΣPBDEs. Furthermore, 
although tests for digression from linearity 
were not statistically significant after the exclu-
sion of the two participants with suppressed 
TSH (data not shown), categorizing PBDEs 
into quartiles provided some evidence sug-
gestive of nonmonotonic exposure–response 
relationships (Figure 1).

Given these results, we also investigated 
associations between PBDE serum concentra-
tions and maternal hyperthyroidism using 
laboratory reference ranges for women in 
their second or third trimester of pregnancy. 
Clinical hyperthyroidism is characterized by 
depressed TSH and elevated free T4. Except 
in one case, all women with low TSH in this 
population had normal free T4 levels, cor-
responding to the definition of subclinical 

hyperthyroidism (Surks et al. 2004). Odds 
of subclinical hyperthyroidism were non-
significantly increased 1.9 times (95% CI, 
0.8–4.5) for each 10-fold increase in ΣPBDEs 
and ranged between 1.6 (95% CI, 0.7–3.7) 
for BDEs 99 and 2.4 (95% CI, 0.9–6.1) for 
BDE-153 (Table 4). Women in the highest 
quartile of ΣPBDEs and BDEs 100 and 153 

had significantly increased odds of subclini-
cal hyperthyroidism relative to women in the 
first quartile.

The serum concentration of other chemi-
cals did not confound associations, and in con-
trast to results observed in rats (Hallgren and 
Darnerud 2002), we found no effect modifi-
cation by PCBs (medians = 65.4 ng/g lipids 

Table 3. Associations between PBDE and TH serum concentrations in pregnant women participating in the CHAMACOS study.

Free T4 (ng/dL) Total T4 (μg/dL) Log10 TSH (mIU/L)

Unadjusted Adjusteda Unadjusted Adjusteda Unadjusted Adjusteda

PBDE β (95% CI) R2 β (95% CI) R2 β (95% CI) R2 β (95% CI) R2 β (95% CI) R2 β (95% CI) R2

ΣPBDEs 0.01 
(–0.06 to 0.07)

< 0.01 0.02 
(–0.05 to 0.09)

0.07 –0.06 
(–0.51 to 0.40)

< 0.01 –0.18 
(–0.65 to 0.30)

0.09 –0.07 
(–0.14 to –0.01)*

0.02 –0.08 
(–0.14 to –0.01)*

0.10

BDE-28 0.00 
(–0.05 to 0.05)

< 0.01 0.01 
(–0.05 to 0.06)

0.07 0.12 
(–0.23 to 0.47)

< 0.01 0.07 
(–0.28 to 0.42)

0.09 –0.05 
(–0.10 to –0.01)*

0.02 –0.05 
(–0.10 to 0.00)*

0.10

BDE-47 0.00 
(–0.07 to 0.06)

< 0.01 0.01 
(–0.06 to 0.08)

0.07 –0.05 
(–0.48 to 0.39)

< 0.01 –0.15 
(–0.60 to 0.30)

0.09 –0.07 
(–0.13 to –0.01)*

0.02 –0.07 
(–0.13 to –0.01)*

0.10

BDE-99 –0.01 
(–0.08 to 0.06)

< 0.01 0.00 
(–0.07 to 0.07)

0.07 –0.05 
(–0.49 to 0.39)

< 0.01 –0.18 
(–0.62 to 0.27)

0.09 –0.06 
(–0.12 to 0.00)#

0.01 –0.07 
(–0.13 to 0.00)*

0.10

BDE-100 –0.01 
(–0.07 to 0.06)

< 0.01 0.01 
(–0.06 to 0.08)

0.07 –0.03 
(–0.48 to 0.42)

< 0.01 –0.11 
(–0.58 to 0.36)

0.09 –0.09 
(–0.15 to –0.02)**

0.03 –0.09 
(–0.15 to –0.02)**

0.10

BDE-153 0.04 
(–0.04 to 0.11)

< 0.01 0.06 
(–0.02 to 0.14)

0.08 –0.15 
(–0.63 to 0.33)

< 0.01 –0.27 
(–0.79 to 0.25)

0.09 –0.08 
(–0.14 to –0.01)*

0.02 –0.08 
(–0.15 to –0.01)*

0.10

PBDE serum concentrations were log10-transformed.
aAdjusted for maternal age at enrollment, education, country of birth, gestational age at the time of blood collection, and family income as well as maternal HCB and PCB serum 
 concentrations. *p < 0.05. **p < 0.01. #p < 0.10.

Figure 1. Percent change in geometric mean TSH by quartile of serum PBDE concentration in pregnant 
women participating in the CHAMACOS study: ΣPBDEs (A) and BDEs 28 (B), 47 (C), 99 (D), 100 (E), and 
153 (F). Results are based on multiple linear regression models adjusted for maternal age at enrollment, 
education, country of birth, gestational age at the time of blood collection, and family income as well as 
maternal serum concentrations of HCB and ΣPCB. Error bars indicate 95% CIs.
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Table 4. Adjusted ORs (95% CIs) for subclinical hyperthyroidism in relation with PBDE serum concentra-
tions (ng/g lipids) in pregnant women participating in the CHAMACOS study.a

PBDE Continuousb Quartile 2c Quartile 3c Quartile 4c

ΣPBDEs 1.9 (0.8–4.5) 2.0 (0.7–6.3) 1.5 (0.5–4.8) 3.3 (1.0–10.3)*,##

BDE-28 1.6 (0.8–3.3) 0.5 (0.2–1.8) 1.0 (0.3–2.9) 2.3 (0.8–6.4)*
BDE-47 1.8 (0.8–4.1) 1.7 (0.6–5.0) 1.3 (0.4–4.0) 2.3 (0.8–7.0)*
BDE-99 1.6 (0.7–3.7) 1.1 (0.4–3.3) 1.1 (0.3–3.3) 1.9 (0.7–5.5)
BDE-100 2.1 (0.9–4.9)* 3.2 (1.0–10.4)# 1.9 (0.5–6.5) 3.9 (1.2–12.9)*,##

BDE-153 2.4 (0.9–6.1)* 3.0 (0.9–9.8)# 3.7 (1.2–11.6)## 3.2 (1.0–13.9)**,##

aAdjusted for maternal age at enrollment, education, country of birth, gestational age at the time of blood collection, and 
family income as well as maternal HCB and PCB serum concentrations. bPBDE serum concentrations were log10-trans-
formed. cORs relative to the first quartile of PBDE serum concentration. *p < 0.10. **p < 0.05 on tests for linear trends for 
continuous or categorical PBDEs. #p < 0.10. ##p < 0.05 relative to quartile 1.
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for ΣPCBs and 19.6 ng/g lipids for enzyme 
inducers; data not shown).

Discussion
We report significant inverse associations 
between TSH concentrations and serum mea-
surements of ΣPBDEs and BDEs 28, 47, 99, 
100, and 153 in pregnant women. The odds of 
subclinical hyperthyroidism were also elevated 
in relation to ΣPBDEs and BDEs 100 and 153. 
Associations appeared to be primarily due to 
a decrease in TSH in participants in the high-
est quartile of PBDE serum concentrations. 
Relationships between ΣPBDEs and individual 
PBDE congeners and free T4 were generally 
null, and associations with total T4 were mostly 
inverse, but none were statistically significant.

This is the largest study to investigate 
associations between PBDEs and TH serum 
concentrations in pregnant women. Only one 
small study (n = 9) previously examined the 
question and found no association between the 
sum of BDEs 47, 99, 100, 153, 154, and 183 
and free or total T4 but did not measure TSH 
(Mazdai et al. 2003). Contrary to most studies 
conducted in nonpregnant adults (Bloom et al. 
2008; Dallaire et al. 2009; Turyk et al. 2008), 
we did not find positive trends between PBDE 
exposure and free T4. Although this discrep-
ancy may be explained in part by differences in 
the methods used to measure free T4 by prior 
studies (immunoassays) relative to the present 
study (direct equilibrium dialysis), elevated free 
T4 suggests that exposure to PBDE may have a 
hyperthyroidic effect, which is consistent with 
our results of decreased TSH. For the most 
part, previous studies of nonpregnant adults 
did suggest reduced TSH serum concentrations 
in relation to higher PBDE exposure (Bloom 
et al. 2008; Dallaire et al. 2009; Hagmar et al. 
2001; Turyk et al. 2008). Lending support to 
our results, a recent study (Turyk et al. 2008) 
found that men with ΣPBDEs > 95th percen-
tile (193 ng/g lipids) had substantially increased 
odds of having detectable serum thyroglobulin 
antibodies (OR = 6.1; 95% CI, 1.9–19.2), 
which are found in 80% of Graves disease 
patients (Weetman 2000). Graves disease is 
believed to be the major cause of hyperthyroid-
ism during pregnancy, accounting for > 85% of 
cases, and may play a role in sub clinical hyper-
thyroidism (Glinoer 1997; Mestman 1997).

It is unclear whether low maternal TSH 
affects fetal health because in vitro studies sug-
gest that human placental permeability to TSH 
is limited (Bajoria and Fisk 1998). Only one 
study has investigated the relation between 
maternal subclinical hyperthyroidism and 
adverse pregnancy outcomes in humans (Casey 
et al. 2006). The authors found no increase in 
low birth weight, major malformations, or fetal, 
neonatal, or perinatal mortality in infants of 433 
women with TSH levels ≤ 2.5th percentile for 
gestational age and nonelevated free T4 levels 

(≤ 1.75 ng/dL) relative to 23,124 women with 
normal TSH levels. Nevertheless, subclinical 
hyperthyroidism may lead to clinical hyperthy-
roidism (Surks et al. 2004), and hyperthyroidism 
during pregnancy has been linked with increased 
risks of miscarriage, premature birth, and intra-
uterine growth retardation (Lazarus 2005). No 
studies have investigated the latent effects on 
subsequent child health or development. Evans 
et al. (2002), however, reported that brain neu-
ronal and glial cell differentiation is affected 
in offspring of partially thyroidectomized rats 
rendered moderately hyperthyroidic by daily 
infusion of T4, suggesting that maternal hyper-
thyroidism may affect fetal neurodevelopment.

There are no data regarding associations 
between subclinical hyperthyroidism during 
pregnancy and maternal health, although clini-
cal hyperthyroidism has been related to preec-
lampsia (Millar et al. 1994). It is also unclear 
whether thyroid dysfunction during pregnancy 
is related to pre- or postpartum TH status. In 
the nonpregnant state, however, depressed TSH 
suggests that a woman’s free T4 and/or T3 is 
above her own individual set point, which can 
be indicative of mild thyroid failure (Andersen 
et al. 2003). Studies conducted in nonpregnant 
adults report that subclinical hyperthyroid-
ism may be associated with all-cause mortality, 
cardiovascular mortality, cardiac dysfunction, 
reduced bone mineral density, and increased 
fracture risk (Surks et al. 2004).

The present study has a number of 
strengths. We used state-of-the-art methods to 
measure TH, including equilibrium dialysis for 
free T4 and an ultrasensitive third-generation 
assay with low LODs to measure TSH. We 
also had information on a large number of 
potential confounders, including demographic 
characteristics and environmental exposures to 
other endocrine disruptors such as lead, PCBs, 
and organochlorine pesticides. In addition, 
these results were unchanged after the exclu-
sion of outliers and were robust to the lipid-
adjustment method and to the summation 
method for ΣPBDEs (weight or molar basis).

The strong correlation among PBDE con-
geners, however, hampered our ability to dis-
tinguish their independent association, and the 
cross-sectional nature of this study limits causal 
inference. Reverse causation, for instance, can-
not be excluded because TH regulates a number 
of metabolic pathways, including lipid metabo-
lism and the activity of some cytochrome P450 
enzymes (Takahashi et al. 2010; Yen 2005), 
which may alter PBDE serum concentrations. In 
addition, the mechanism of action for reduced 
TSH has not been clearly established. Possibly 
because of their structural similarity with T4 and 
T3, hydroxylated PBDEs (OH-PBDEs) have 
been shown to bind to thyroid receptors α1 
and β and may thus inhibit the release of TSH 
by the pituitary (Marsh et al. 1998). Exposure 
of human hepatocytes to BDE-99 in vitro has 

also been shown to up-regulate type I deiodi-
nase, which is involved in the deiodination of 
T4 to T3 and reverse-T3 (Stapleton et al. 2009). 
Elevated T3 would result in decreased TSH lev-
els, but we did not measure T3 in this study 
because of limited sample volume. In addition, 
other chemicals have been shown to lower TSH 
through binding to the retinoid X receptor or 
interference with neuroendocrine signaling 
pathways (Haugen 2009), but few studies have 
investigated whether PBDEs act through these 
mechanisms.

It is noteworthy that studies conducted 
in rodents generally reported a hypothyrox-
inemic effect of exposure to PBDEs whereas 
human studies suggest a hyperthyroidic effect. 
Discrepancies between human and animal 
studies may be due to the high doses used in 
animal studies and physiologic differences. 
For instance, OH-PBDEs have been shown 
to competitively bind to human transthyretin 
(TTR), possibly resulting in increased T4 clear-
ance (Meerts et al. 2000). Although TTR binds 
75% of the circulating T4 in rats (Chanoine 
et al. 1992), it only binds 10–15% in humans 
(Robbins 2000), and thus effects of PBDEs 
through this mechanism may be stronger in 
rats than in humans. Animal studies have also 
reported that the PBDE commercial mixtures 
DE-71, DE-79, and Bromkal 70-5DE induce 
UDP-GT (Hallgren et al. 2001; Zhou et al. 
2001), which catalyzes the glucuronidation of 
T4, the rate-limiting step in T4 elimination. It 
is, however, unclear whether PBDEs induce 
UDP-GT in humans.

Conclusion
We report an inverse association between TSH 
and ΣPBDEs and BDEs 28, 47, 99, 100, and 
153 serum concentrations in pregnant women 
around the 27th week of gestation. Odds of 
subclinical hyperthyroidism were also elevated 
in association with increased exposure to some 
of these chemicals. We observed these find-
ings in a population with median serum PBDE 
concentrations within the range of a nationally 
representative sample. Although maternal clini-
cal hyperthyroidism has been associated with 
adverse pregnancy outcomes such as preeclamp-
sia, premature births, and low birth weight, few 
data are available on the direct effects of mater-
nal subclinical hyperthyroidism on fetal and 
child development. In future analyses, we thus 
intend to examine whether subclinical hyper-
thyroidism and maternal exposure to PBDEs 
are associated with these outcomes.
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